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Abstract. Rheological models for granular materials play an important role in the numerical simulation of dry dense snow

avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche

simulations. Those are usually based on depth-averaged two-dimensional models. Therefore a method to adapt the three-

dimensional rheological model is presented. In a further step simulation results are compared to velocity and runout obser-

vations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction model,5

which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized

residuals of different observation variables in order to take into account the quality of the simulations in various regards. It

is demonstrated that the kinetic theory provides a physically based explanation for the structure of phenomenological friction

relations and contributes improvements, in particular when different events and various observation variables are investigated.

1 Introduction10

Within the last few decades several software tools for the simulation of snow avalanches or, generally speaking, shallow gran-

ular flows have been developed, such as SamosAT (Sampl and Zwinger, 2004; Zwinger et al., 2003), TITAN2D (Pitman et al.,

2003; Patra et al., 2005), RAMMS (Christen et al., 2010) or r.avaflow (Mergili et al., 2012). In this study the software SamosAT

is utilized. The implemented flow model therein is the Savage-Hutter model (Savage and Hutter, 1989, 1991), which is related

to the famous shallow water or Saint-Venant equations (de Saint-Venant, 1871). These models idealize avalanches and other15

free surface flows as depth-averaged flows. The Saint-Venant equations are set up in a Cartesian coordinate system and the nor-

mal stresses are assumed to be hydrostatic. On the contrary, the Savage-Hutter equations are set up in a curvilinear coordinate

system (compare Bouchut et al., 2004) and the hydrostatic pressure assumption is replaced by an assumption for the lateral

active or passive earth pressure, common in soil mechanics. The density is assumed to be constant in both models.

Within this framework rheological models attract a significant portion of attention. A widespread classic phenomenological20

rheological model used in depth-averaged models is the Voellmy friction model (equation (48)) (Voellmy, 1955). An explana-

tion for the Voellmy friction model, based on a physical model, similar to Bagnold (1954, 1966), is presented in Salm (1993).

The Bagnold (1954) model itself can be derived as a specialization of kinetic theory (Mitarai and Nakanishi, 2005; Lee and

Huang, 2010).

Buser and Bartelt (2009) introduce the concept of random kinetic energy, similar to granular temperature in kinetic theory. The25

evolution of the granular temperature is described by a transport equation and influences the rheological behavior, similarly to
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the thermodynamic temperature in fluid dynamics. This approach shows some similarities to the kinetic theory model used in

this work. However, instead of solving a transport equation, convection and diffusion are neglected and a local equilibrium of

the granular temperature is assumed to get an analytical expression for the shear stress. Another approach is presented by Issler

and Gauer (2008), who apply the Norem-Irgens-Schiedldrop model (Norem et al., 1987) to deduce a friction relation for snow

avalanches.5

The rheology of granular materials has been investigated in many scientific works within the framework of three-dimensional

continuum mechanics. An important category of microrheological models, dealing with rapid granular flows, is the kinetic

theory (Campbell, 1990; Goldhirsch, 2003). Standard kinetic theory struggles to describe the dense flow regime at low shear

rates. Recently developed extensions aim to take into account the formation of clusters (Jenkins, 2006, 2007) and enduring

force chains (Berzi et al., 2011; Vescovi et al., 2013). The basis of the presented approach is the extended kinetic theory, as10

formulated by Vescovi et al. (2013). This microrheological model deals with both, the quasi-static regime described by the

critical state theory and the rapid, collisional flow, described by the kinetic theory of granular gases.

To implement the constitutive model into the depth-averaged dynamic models, several assumptions about the vertical structure

of the flow are made, simplifying the friction relation between avalanche and bottom. It is shown that the simplified expression

is similar to classic friction relations. In a further step the obtained relation is compared with classic friction relations, which15

are often applied in hazard estimation. Therefore back calculations of well-documented avalanches are used to determine min-

imal residuals in multiple observation variables, such as runout distance, affected area and velocity. It is shown that the relation

obtained by kinetic theory allows to reduce the residuals for the presented events.

2 Constitutive relations in the Savage-Hutter model

The governing equations of the Savage-Hutter model, extended for entrainment, as implemented by SamosAT, for an incom-20

pressible, granular flow over a one-dimensional terrain can be expressed as

∂ h

∂ t
+
∂ (hu)
∂ x

=
q̇

ρ
, (1)

∂ (hu)
∂ t

+
∂
(
hu2

)

∂x
= hgx−

1
2ρ

∂
(
Ka/pσbh

)

∂x
− τb
ρ
. (2)

These expressions can also be written for the two-dimensional case (e.g. Sampl and Zwinger, 2004).

Equation (1) describes the conservation of mass and equation (2) the conservation of momentum parallel to the slope surface.25

x is the curvilinear coordinate, z the coordinate perpendicular to x and t the time. ρ represents the flows density, assumed

to be constant, h the slope perpendicular flow depth, u the slope parallel depth integrated velocity of the flow in x-direction
1
h

∫ h
0
uxdz, gx and gz are the gravitational accelerations in x- and z-direction, respectively. The entrainment rate q̇ represents

the mass entrained by the avalanche within a specific amount of time and area (with unit kg m−2 s−1).

The resistance of the material against its deformation is considered with the second and third term on the right-hand side of30

equation (2). The second term represents the slope parallel pressure gradient ∂σx

∂x , expressed by the basal normal stress σb and

the earth pressure coefficient Ka/p. σb is calculated with respect to the centripetal acceleration due to the basal curvature κ as
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(Sampl and Zwinger, 2004; Fischer et al., 2012)

σb = ρh
(
gz +κu2

)
. (3)

The earth pressure coefficient Ka/p is given as

Ka/p =





Ka = 2
1−

√
1− cos2φ/cos2 δ

cos2φ
− 1 if

∂u

∂x
≥ 0

Kp = 2
1 +

√
1− cos2φ/cos2 δ

cos2φ
− 1 otherwise

, (4)

from a Mohr–Coulomb yield criterion (Savage and Hutter, 1989, 1991). Another approach by Salm (1966, 1993) is based on5

Rankines earth pressure. Here, φ is the internal friction angle and δ the bed friction angle. Ka/p = 1 coincides with hydrostatic

pressure and the Saint-Venant assumption and is a commonly used simplification (Christen et al., 2010). Bartelt et al. (1999)

showed, that the sensitivity of the relevant simulation results for snow avalanche modeling to the internal friction angle is rather

small. However, a detailed analysis is not in the scope of this work and a fixed internal friction angle, employing equation (4)

is utilized.10

The third term on the right-hand side of equation (2) describes the basal friction. Usually this term is a combination of a

Coulomb type friction (σb tanδ) and a velocity dependent drag term (f(σb,u)u2) (Hutter et al., 2005).

3 Constitutive relations in the framework of three-dimensional continuum mechanics

In this section a rheological model formulated within the framework of three-dimensional continuum mechanics is presented.

Flows of granular material can display a large span of grain concentrations. Microscopic mechanical processes and conse-15

quently the macroscopic behavior of the material changes substantially with the concentration or solid fraction ν and the

granular temperature T . They are determined by the flow variables, herein the normal stress along the transversal direction σ

and the shear rate γ̇, given as the derivative of the velocity in its perpendicular direction, ∂u∂z (see figure 1). The concentration

is defined as

ν =
Vp
V
, (5)20

where Vp is the particle volume and V the total volume. The granular temperature is associated with the fluctuation of the

particle velocity

3
2
T =

1
2

(up−u)2 , (6)

where up is the particle velocity and u is the mean velocity of the flow. To describe the whole range of flow configurations,

multiple mechanical processes, described by different theories, need to be taken into account (Berzi et al., 2011; Vescovi et al.,25

2013).

On the one hand, the critical state theory (Roscoe et al., 1958; Schofield and Wroth, 1968) describes granular material at
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Figure 1. Simple shear flow configuration

vanishingly small shear rates γ̇. This model is completely time-independent and does not take into account the velocity of any

process. The stresses in the material are based completely on enduring force chains between particles. Also the assumption of

the incompressibility of granular flows follows from this theory: granular material under motion always reaches asymptotically

a certain stress dependent concentration, the critical concentration.

The contribution of quasi-static (subscript q) force chains to the total stresses, as described by the critical state theory, is given5

as

σq = f0
K

d
, (7)

τq = σq tanφ′ss, (8)

with

f0 =




a
ν− νrlp
νs− ν

if and only if ν > νrlp and νrlp < νs

0 otherwise
, (9)10

K =
πdE

8
. (10)

Equations (7) and (8) can be considered as critical state line in the ν-σ-τ -space, equation (8) corresponds to the Mohr-Coulomb

criterion, both known from soil mechanics. Material parameters are the tangent of the internal friction angle at the critical state

tanφ′ss, the Young’s modulus of the particles E, the particle diameter d, the concentration at random loose packing νrlp, the

concentration at closest packing νs and the dimensionless parameter a.15

On the other hand, the kinetic theory of granular gases describes the granular material under the influence of high shear rates.

The stresses in the material are based on short contacts between particles, i.e. elasto-plastic collisions. The following form of

this theory was proposed by Garzó and Dufty (1999) and modified by Jenkins and Berzi (2010) and Vescovi et al. (2013). It is

limited to homogeneous, steady, simple shear flows of identical, dry, spherical particles.
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The contribution from collisions (subscript c) to the total stresses is given as

σc = ρp f1 f4T (11)

τc = ρp df2 f4T
1/2 γ̇, (12)

and the dissipation rate of the granular temperature by

Γc = ρp
f3
L
f4T

3/2, (13)5

with

f1 = 4νGF, (14)

f2 =
8J

5π1/2
νG, (15)

f3 =
12
π1/2

(
1− ε2

)
νG, (16)

G= ν g0, (17)10

g0 =





2− ν
2(1− ν)3

ν ≤ 0.49

5.69(νs− 0.49)
νs− ν

ν > 0.49
, (18)

F =
1 + ε

2
+

1
4G

, (19)

J =
1 + ε

2
+
π

32
[5 + 2(1 + ε)(3ε− 1)G][5 + 4(1 + ε)G]

[24− 6(1− ε)2− 5(1− ε2)]G2
, (20)

f4 =

[
1 + 2

d

s

(
ρpT

E

)1/2
]−1

, (21)

s=
√

2
12

d

G
, (22)15

f5 =
L

d

f2
f3
, (23)

L

d
= max

[
1,
(
c2G2/3 f3

4f2

)1/3
]
. (24)

Additional material parameters, introduced by the kinetic theory, are the particle density ρp, the coefficient of restitution ε and

the dimensionless parameter c.

The total stresses can be expressed as sum of the quasi-static and the collisional stresses:20

σ = σq +σc =
K

d
f0 + ρp f1 f4T, (25)

τ = τq + τc =
K

d
f0 tanφ′ss + ρp df2 f4T

1/2 γ̇. (26)
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The evolution of the granular temperature is described by the conservation equation,

3
2
ρ
∂ T

∂ t
= τcγ̇−∇ ·qc−Γc, (27)

with production τc γ̇, flux qc, and dissipation Γc. The assumptions of steady state and simple shear imply that granular tem-

perature is dissipated where it has been produced. This approach, called equilibrium assumption (van Wachem, 2000), is also

applied to dense flows apart from steady, simple shear conditions in some works (Syamlal et al., 1993; Boemer et al., 1997;5

van Wachem et al., 1998, 1999; van Wachem, 2000) and is justified by the dominance of generation and dissipation terms over

convection and diffusion terms. So the transport equation can be reduced to an algebraic formulation of the equilibrium state,

given as (Vescovi et al., 2013)

Γc = τc γ̇. (28)

This assumption allows to apply the kinetic theory to the dynamic model without introducing additional differential equations,10

as for example done by Christen et al. (2010).

By introducing equations (12) and (13) into equation (28), the granular temperature can be expressed as a function of the shear

rate γ̇ and the concentration ν:

T = d2 f5 γ̇
2. (29)

Introducing equation (29) in equations (25) and (26) leads to an expression for the total stresses, only depending on γ̇ and ν:15

σ =
K

d
f0 + ρp d

2 f1 f4 f5 γ̇
2, (30)

τ =
K

d
f0 tanφ′ss + ρp d

2 f2 f4 f
1/2
5 γ̇2. (31)

According to equations (30) and (31), it is possible to characterize the flow regime with only two state variables. In the case of

known values for σ and γ̇, equation (30) can be used to solve for ν, using Newton-Raphson (e.g. Press et al., 1996) or another

root-finding routine. τ can then be calculated with equation (31), T with equation (29), if required. Material parameters20

for snow are not available. To qualitatively highlight the most important features the constitutive model is analyzed for an

idealized 1mm quartz sand (d= 1mm, ρp = 2600kg m−3, K = 2.8 · 107 Pa, ε= 0.6, c= 0.5, a= 1.8 · 10−6, tanφ′ss = 0.5,

νs = 0.619, νrlp = 0.55, Vescovi et al. (2013), see figures 2-8). Figure 2 shows the dynamic critical state surface in the σ-γ̇-

ν-space. According to the presented theory, flow states are limited to this surface. The color in figure 2 shows the dominant

source of stresses, which can be interpreted as flow regime. In yellow areas, enduring contacts, forming elastic networks25

between particles, are dominant (referred to as quasi-static regime (da Cruz et al., 2005; Berzi et al., 2011; Vescovi et al., 2013)

or elastic-quasi-static regime (Campbell, 2002, 2005, 2006)). In blue areas, collisional stresses are dominant (referred to as

collisional regime (da Cruz et al., 2005; Vescovi et al., 2013; Berzi et al., 2011), kinetic regime (da Cruz et al., 2005; Forterre

and Pouliquen, 2008; Vescovi et al., 2013; Berzi et al., 2011) or inertial-collisional regime (Campbell, 2002, 2005, 2006)). The

flow is purely collisional for concentrations below the random loose package: ν < νrlp. The red area represents a transitional30
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Figure 2. Critical state surface in the σ-γ̇-ν-space. The color marks the origin of stresses, in yellow areas frictional stresses are dominant, in

blue areas collisional stresses.
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Figure 3. Stress ratio τ/σ in dependence of normal stress σ and shear rate γ̇

zone between those cases, where both effects co-exist (referred to as dense regime (da Cruz et al., 2005) or elastic-inertial

regime (Campbell, 2002, 2005, 2006)).

The granular temperature, which is not shown, is almost solely dependent on the shear rate γ̇.

The stress ratio τ/σ and the respective concentration ν for a given set of σ and γ̇ are shown in figure 3 and 4. The constitutive

model predicts a stress ratio τ/σ = tanφ′ss for γ̇→ 0 corresponding to critical state theory and a stress ratio corresponding5

to kinetic theory for high shear rates. The concentration is almost unaffected by changes in shear rate γ̇ until it drops below
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Figure 4. Concentration ν in dependence of normal stress σ and shear rate γ̇
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Figure 5. Contribution of enduring force chains: stress ratio τq/σ

νrlp, e.g. at γ̇ ≈ 5 · 102 s−1 for σ = 103 Pa. At this point the concentration decreases abruptly and the shear stress lowers with

increasing shear rate, after reaching its peak. This behavior can be interpreted as a transition from a dense flow to a powder

cloud like flow. This work is focused on dense flow - the post-peak-behavior is therefore not investigated.

A separation of quasi-static and collisional stresses is shown in figures 5 and 6. For small stress levels, increasing collisional

stresses τc can compensate the decreasing quasi-static stresses τq . At high stress levels, this is not the case and the stress ratio5
τ
σ = τq+τc

σ shows a non-monotonic behavior before reaching the peak (figure 3).

This form of constitutive relation is difficult to implement in an operational simulation tool. Therefore approximations of

equations (30) and (31) are made. In analogy to other studies (see Ancey (2007) for a review) two approaches, varying the
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Figure 6. Contribution of collisions: stress ratio τc/σ

distribution of collisional and quasi-static friction are evaluated:

τ = µ(σ, γ̇)σ+ λ̃(σ, γ̇) γ̇2, (32)

with

µ(σ, γ̇) = tanφ′ss f0, (33)

λ̃(σ, γ̇) = ρp d
2 f2 f4 f

1/2
5 . (34)5

Within this formulation, λ̃ γ̇2 represents collisional stresses. The decrease of quasi-static stresses is considered with µ(σ, γ̇).

The second approach is given as

τ = tanφ′ssσ+λ(σ, γ̇) γ̇2, (35)

with

λ(σ, γ̇) = ρp d
2 f4 f

1/2
5

(
f2− f1 f1/2

5 tanφ′ss
)
. (36)10

Here, the term λγ̇2 also accounts for the decreasing quasi-static stress. Both, λ̃ and λ are approximately constant within a

certain range of σ and γ̇. The first approach separates friction by their source (quasi-static - collisional), while the second

approach separates friction into a shear-rate independent and shear rate dependent part. The second approach with constant

µ= tanφ′ss leads to a better approximation (see figure 7) and a simpler formulation with less parameters. However, the non-

monotonic behavior at high stress levels can not be reproduced with this approach. Values for λ are shown in figure 8. Up to15

a normal stress of 104 Pa and until the peak is reached, λ can be approximated as constant. So equation (35) with a constant

value for λ is employed in the following:

τ = µσ+λγ̇2. (37)

9
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Figure 7. The factors λ (blue) and λ̃ (red) for γ̇→ 0. The colored areas show ranges of σ where the respective value can be approximated

with the value at σ→ 0 within an error of ±10%. λ remains in the range of λ|σ→0± 10% up to 4 · 104 Pa, λ̃ in the range of λ̃|σ→0± 10%

up to 4 · 103 Pa.
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Figure 8. The factor λ as a function of σ and γ̇. In the white area no solutions could be obtained with the model. In the yellow area the value

for the factor λ has its maximum value of approximately 3.5 · 10−4 Pa s2. This value decreases at the borders of the yellow area. In the gray

area, values for λ are negative, indicating a non-monotonic behavior.

4 Velocity profile and kinematic relations

The material model obtained by the granular kinetic theory results in a relation depending on the shear rate, which does not

explicitly appear in depth-averaged models. However, the equilibrium of stresses at the bottom of the avalanche requires that

τb = τ (σb, γ̇b) , (38)

10
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Figure 9. Orientation of the coordinate system and stresses in the slope parallel direction on an infinitesimal small control volume. Slope

parallel normal stresses (Ka/pσ) cancel each other and are not shown.

where σb is the normal stress at the bottom and γ̇b is the shear rate at the bottom. According to the Savage-Hutter model and

related friction models, the friction can depend on velocity. To obtain an expression of the form τb (u,h) we need to express σb

(see equation (3)) and γ̇b with known flow variables. Therefore a reconstruction of the velocity profile is required.

Supposing that the avalanche has reached its steady state on a slope with constant inclination α and that ∂h∂x is very small, as

for the middle part of an avalanche (referred to as equilibrium shape of the velocity profile (Issler and Gauer, 2008) or simple5

shear infinite landslide model (Dutto, 2014)), all volume forces and stresses can be expressed with the differential equations

∂τ

∂z
=−ρg sinα, (39)

∂σ

∂z
=−ρg cosα. (40)

The left hand side in equations (39) and (40) describes the change of stresses in z-direction, which is caused by the gravitational

volume force (right hand side). Introducing the constitutive relation (equation (37)) in equation (39) leads to10

∂

∂z
(µσ) +

∂

∂z

(
λγ̇2

)
=−ρg sinα, (41)

and with equation (40) for ∂σ∂z to

∂

∂z

(
λγ̇2

)
= ρg (µ cosα− sinα) . (42)

Integration with respect to the boundary condition γ̇|z=h = 0 (following from τ |z=h = 0) leads to

γ̇ =

√
ρg (sinα−µ cosα)

λ

√
h− z. (43)15
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Figure 10. Velocity profile for an infinite avalanche in steady state on a uniformly steep slope for the given rheology model (blue line). For

comparison, velocity measurements of a dry snow avalanche from a field test in Vallée de la Sionne is shown (red with error bars) (data from

Kern et al., 2009; Sovilla et al., 2015). The measurement shows a more bulbous velocity profile which indicates a plug flow regime. The error

bars show the high fluctuation of velocity of grains which agrees to the assumptions of the kinetic theory.

Introducing γ̇ = ∂u
∂z and integrating again with respect to the boundary condition u|z=0 = 0 (no slip condition) leads to an

algebraic expression of the velocity profile

u=
2
3

√
ρg (sinα−µ cosα)

λ

(
h3/2− (h− z)3/2

)
. (44)

The depth averaged velocity can be calculated with

u=
1
h

h∫

0

u(z) dz =
2
5

√
ρg (sinα−µ cosα)

λ
h3/2. (45)5

Molecular dynamic simulations of granular particles on an inclined plane result in a similar velocity profile, yielding an

averaged velocity of u∝ h1.52±0.05 (Silbert et al., 2001). Moreover, this correlation was observed in experiments by Pouliquen

(1999). Also a comparison with velocity profile measurements in real scale test sites (Kern et al., 2009; Sovilla et al., 2015)

shows resemblance in the middle part of the avalanche, see figure 10.

Finally a relation between the depth averaged velocity (equation (45)) and the shear rate at the bottom of the avalanche γ̇b =10

γ̇|z=0 (equation (43)) can be derived:

γ̇b =
5
2
u

h
. (46)

Introducing equation 46 into the constitutive relation leads to the basal shear stress

τb = µσb +λ

(
5
2

)2 (
u

h

)2

. (47)

The factor 5/2 is directly related to the shape of the velocity profile and will change for other profiles, e.g. the velocity profile15

at the front of the avalanche. Moreover, a plug flow near the free surface is not reproduced by equation (47), but visible in the
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measurement shown in figure 10. Dent et al. (1998) shows velocity profiles where most shearing is concentrated at the ground.

The appearance of a plug flow in measurements can be explained with cohesion (Norem et al., 1987), segregation effects or a

flow in transitional state (Rauter, 2015). Expression (47) shows some similarities to classic friction relations, the most similar

relation is predicted by Issler and Gauer (2008), which is based on the Norem-Irgens-Schiedldrop model (Norem et al., 1987).

Also the similarity to the Voellmy friction relation, given as5

τb = µσb +
ρg

ξ
u2, (48)

is remarkable. Because of the similarity and its extensive application in snow avalanche simulations, the Voellmy friction model

is used as a reference to test the obtained friction relation.

For a better comparison to the Voellmy friction parameter ξ the parameter

χ :=
(

2
5

)2
ρg

λ
(49)10

is introduced. This leads to the expression

τb = µσb +
ρg

χ

u2

h2
, (50)

where χ contains the velocity profile dependent factor 5/2. A constant χ indicates, that the same shape of the velocity profile

in the whole avalanche is assumed.

The difference between the obtained relation and the friction relation of Voellmy is the inverse quadratic dependency on the15

flow height. This leads to a lower friction for larger flow heights and therefore larger avalanches. This behavior is in line with

observations: To adapt the Voellmy friction model to avalanches of various sizes, different material parameters are used, e.g.

µ gets varied between 0.155 for big avalanches and 0.3 for small avalanches, while ξ is usually related to the slope roughness

(e.g. Salm et al., 1990; Gruber et al., 1999; Fellin, 2013).

5 Model test and parameter evaluation20

To test the obtained friction relation, we employ a multivariate optimization method, based on the work of Fischer et al. (2015).

This method takes different optimization variables into account, which represent the main avalanche characteristics, e.g. runout

or velocity. These can be obtained from simulation and field observations and their residuals can be quantitatively evaluated.

Low absolute residual values indicate a good simulation-observation correspondence. The variation of input parameters is lim-

ited to friction parameters, which allows a simple and clear comparison. By scanning the entire physically relevant parameter25

space, parameter sets, yielding minimal residuals between simulation and observation, are identified. The combination of two

different avalanche events, which differ significantly in volume and velocity, are investigated, allowing to unify parameter sets

for avalanches of different types, which is usually not only a superposition of the single events (compare Issler et al., 2005).

The two avalanche events are (compare Fischer et al., 2014):
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– Avalanche No. 103 from the 10th of February 1999 at the Vallée de la Sionne (VdlS) test site with a deposition volume

of approximately 500000m3 and a velocity of up to 70m s−1 (see Sovilla, 2004; Sovilla et al., 2006, for details).

– Avalanche from the 17th of April 1997 at the Ryggfonn (Rgf) test site with a deposition volume of approximately

40000m3 and a velocity of up to 40m s−1 (see Gauer et al., 2007, for details).

The simulations have been carried out using the SamosAT simulation software, including entrainment and the respective5

friction model. To calculate the earth pressure coefficient Ka/p, a value of 15◦ for the internal friction angle φ is used in all

simulations. Note that in SamosAT, solving equation (4), φ is set equal to δ when φ < δ.

Especially for the VdlS avalanche, entrainment appears important because of the high increase of volume during its descent. A

simple approach for the entrainment rate q̇ of the form

q̇ =
τb
eb
|u| , (51)10

where eb represents the specific erosion energy (compare Fischer et al., 2015) is employed. To estimate appropriate erosion

energy coefficients we calculated growth indices, determining the quotient of the deposition mass and the initially released

mass. This index is mainly influenced by the entrainment model, the available snow mass and the corresponding parameter.

The field observations yield growth indices of 2.3 and 6.0 for Rgf and VdlS, respectively. To resemble values in this range,

erosion energy coefficients of 10000J kg−1 for Rgf and 1000J kg−1 for VdlS, were found to be appropriate. The snow cover15

height hmsc, which is used to limit the entrainment and determine the release volume, was calculated with regards to the

elevation and slope inclination α:

hmsc = h0 + ∆h (z− zref)cosα, (52)

where h0 represents the snow cover height at the elevation zref and ∆h represents its increase with elevation. This approach

ensures a smooth initial snow distribution. The snow cover parameters (zref = 2400m, h0 = 1m, ∆h= 10−4 for VdlS and20

zref = 1500m, h0 = 2m, ∆h= 6 · 10−5 for Rgf) are chosen to match field observations of release volume and snow depth

estimates.

In order to investigate the range of possible simulation results, the friction parameter µ is varied uniformly between 0.1 and

0.5 for both friction models, the friction parameters ξ and χ are varied between 102 and 104 (units are m s−2 and m−1 s−2

respectively). A logarithmic distribution for these parameters is chosen in order to account for the large associated uncertainty,25

i.e. order of magnitude.

To judge the quality of our simulations they are compared with measurements of the following observation variables:

The velocity in the avalanche track obtained by pulsed Doppler radar measurements. The radar measures the radial velocity

and in combination with the elevation model, the surface parallel velocity can be calculated. After an appropriate coordinate

transformation these values can then be compared with velocities obtained by simulations (Fischer et al., 2014). The radars30

settings allowed a distance between range gates of 50m. This leads to a resolution of 14 values along the avalanche path for

both events.
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The affected area near the deposition area. The deposition area can not be analyzed directly because the dynamic model does

not simulate the deposition process explicitly. Therefore areas, where the simulation results exceed a specific dynamic peak

pressure, plim = 1kPa in our case, are compared. The pressure is calculated from primary flow variables as

p= ρu2, (53)

with ρ= 200kg m−3. Note that the simulation results are independent of the density ρ and the pressure limit plim may equiv-5

alently be expressed in terms of peak velocities. However, defining affected areas and runout in terms of pressures is in

accordance with different international hazard mapping guidelines (c.f. Jóhannesson et al., 2009).

The runout distance along the avalanche path. The runout length is measured as projected length in the natural coordinate

system, defined by the avalanche track. Just like the affected area, the runout length is defined by the farthest point where the

avalanche exceeds the pressure plim along its cross section (Fischer, 2013).10

To quantify the quality of a simulation with the parameter set i, we used the residuals between values obtained by the respective

simulation Xi and the measurements X̂ , calculated as

δXi =
∣∣∣Xi− X̂

∣∣∣ , (54)

where δX can be the residual of velocity δu or of runout length δr. The residual of the affected area δA is calculated in a

similar manner, but integrated over the investigated area Aoi15

δAi =
∫

Aoi

|ai(x,y)− â(x,y)| dA. (55)

Here, ai(x,y) denotes whether the pressure exceeded the threshold plim at the respective position x, y in the simulation i or

not:

ai(x,y) =





1 if pi(x,y)≥ plim

0 otherwise
. (56)

â(x,y) represents the documented affected area in the same manner. Therefore, δAi represents the area, where simulation and20

documentation disagree. In this way we could take into account not only the runout distance from a single point, but also

the form of the avalanche. The area where the affected area was analyzed (Aoi, area of interest, in equation (55)) is shown

in figure 11. It contains the whole runout area of all simulations and the documented affected area. To combine residuals

expressed by more than one value (like the velocity in the avalanche track, represented by a value for each range gate) we used

a value related to the residual sum of squares of the form25

δXi =

√√√√√
N∑
n=1

δX2
i,n

N
. (57)

The division by the number of values N and taking the square root ensures that the resulting residual is of the same unit and of

comparable size with respect to the single values. This eases the interpretation from an engineering point of view. We used the
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same concept to combine residuals from more events to obtain a single residual which would be obtained by simulating these

events with the same parameters. The events in this Paper are VdlS and Rgf:

δXi,VdlS+Rgf =

√
δX2

i,VdlS + δX2
i,Rgf

2
(58)

To combine residuals of different kinds, like runout and velocity, we normalized the respective residuals with the minimum

and maximum residuals from all simulations to eliminate the specific scale5

δXi,norm =
δXi− δXmin

δXmax− δXmin
, (59)

δXi,comb =

√
δu2
i,norm + δr2i,norm + δA2

i,norm

3
(60)

The normalization was always performed after the combination of values of the same kind and after combining two events.

This is important because the normalization and combination of residuals is not distributive.10

This method does not require reference values like an acceptable error or a measurement error.

A possible drawback of this method is that larger events have a bigger impact on the results than smaller ones because of

the larger absolute values of velocity and runout. If this is not suitable for the respective problem, one could also perform the

normalization before combining the events and therefore lay weight on different events equally. The combination of events and

measures leads to four possibilities to evaluate and compare model performance with respect to different regards and events15

(compare figures 13, 14 and table 1):

(a) To a single event with respect to a single observation variable (δr, δA and δu, marked by )

(b) To a single event with respect to all investigated observation variables (δr∧ δA∧ δu, marked by )

(c) To both events with respect to a single observation variable (δrVdlS+Rgf, δAVdlS+Rgf and δuVdlS+Rgf, marked by )

(d) To both events with respect to all investigated observation variables (δrVdlS+Rgf ∧ δAVdlS+Rgf ∧ δuVdlS+Rgf, marked by )20

The first evaluation is the simplest to be fulfilled sufficiently with the simulation results. The last contains the most information

and is therefore the most valuable.

6 Results and Discussion

The following section shows the evaluation of 1600 simulation runs. This number results from two events, two friction models

and 20 values for the friction parameters µ and ξ or χ respectively.25

In figure 13 the evaluation of residuals from all simulations is summarized, separated by event and friction model. Figure 14

shows the same result combined for both events. Additionally the combined residuals in dependence of the respective friction

parameters are highlighted.
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doc. affected area release area area of interest plim-isobar Voellmy (best) plim-isobar Kinetic Theory (best)

100 0 100 200 300 400 m 100 0 100 200 300 400 m

(a) Ryggfonn (b) Vallée de la Sionne

Figure 11. Outlines of the numerical simulations in comparison with the documented affected area for the avalanche event in Ryggfonn

(a) and Vallée de la Sionne (b). The red and blue lines show the plim isobars for the simulation with the smallest residuals for the Voellmy

friction model and the new friction model respectively. The yellow filled areas show the documented affected areas and the orange filled

areas show the release areas. The evaluation of the affected area was limited to the area within the black polygons. In the figure showing the

event in Rgf one can see that the avalanche (yellow area) stopped and spread apart about 50m before the dam. This results from a large snow

deposit uphill of the dam. Because the digital elevation model does not take into account the snow height, numerical simulations show the

same behavior of the avalanche with an offset of about 50m. The smallest residual is achieved by simulations with high friction which leads

to a stopping of the avalanche before reaching the dam and an untypical form.

The runout distance represents a point in the avalanche path. Simulations with high friction (high values for µ, low values for

ξ and χ) do not reach this point, simulations with low friction exceed this point. Therefore there is a combination of parameters

between those limiting cases, where the simulation fits the documented runout length almost perfectly. When optimizing two

events together this behavior changes. Two observations need to be satisfied, however, in order to satisfy the two observations

each simulation demands its own parameter set. This behavior can be seen in figure 14 as well. The residual for the runout5

length is 22.9m at best when optimizing both events together.

The affected area is also a measure related to runout. However, it provides an additional important information on the lateral

extend and spatial distribution of the avalanche. The correlation to runout is clearly visible in figures 13 and 14, as the respec-

tive areas of low residuals overlap. Figure 11 shows the documented affected area alongside with the affected area obtained

from simulations with the smallest residuals in this respect (δAmin). A perfect correspondence between the documented area10

and the affected area in the simulation does not appear in any of our simulation runs. This can also be seen in figure 13. The

smallest residual is about 7700m2 for Rgf and 65000m2 for VdlS respectively.

In case of the RGF avalanche, it is observed, that the agreement of documented and simulated affected area is limited. This can

be attributed to a large amount of deposited snow in the runout, which is not considered in the digital elevation model, leading

to an upstream spreading of the avalanche (see figure 11a). All simulations are affected equally by this effect, which leads to15

17

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-98, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 1 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



radar velocity sim. velocity Voellmy (bestfit) sim. velocity Kinetic theory (bestfit) all simulations

0 500 1000 1500 2000

s (m)

0

10

20

30

40

50

60

u
(m

s−
1
)

0 500 1000 1500 2000 2500

s (m)

0

10

20

30

40

50

60

70

80

u
(m

s−
1
)

(a) Ryggfonn (b) Vallée de la Sionne

Figure 12. Velocity measurements compared with simulation outcomes for the avalanche event in Ryggfonn (a) and Vallée de la Sionne

(b). The flow direction is right to left. The x-axis shows the distance from the radar station, the y-axis shows the velocity. The red line

shows the velocity obtained by the pulsed Doppler radar measurements with an estimated observational error. The yellow and blue lines

show the velocity along the radar path in the simulation with the smallest residual for the Voellmy friction model and the new friction model

respectively. The dashed lines show the best simulation when using the same material parameter for both events. For the kinetic theory

friction model the optimized parameter set for VdlS and both events combined coincide. The background shows the distribution of velocities

obtained by all simulations.

the big red areas in figures 13a and 13b.

For the event in VdlS, the delineation of the documented affected area is accompanied by uncertainties, due to the large pow-

der cloud of this avalanche. The applied documented affected area represents areas with clearly visible snow depth variations

(deposition and erosion) caused by the avalanche (Vallet et al., 2001). Figure 11b shows that simulations with an overall good

accordance in the runout fail to reproduce the high climb on the counter slope (the two humps opposite to the two main5

avalanche tracks). This is the exact area where one expects the powder snow layer to detach from the dense flow layer (the

dense flow layer follows the terrain more strictly than the powder snow layer).

Another interesting detail can be observed in figure 11b. In contradiction to the Voellmy model, the kinetic theory model pre-

dicts a separation of two branches in the runout zone, which matches the observed behavior. This is an indication for a proper

description of important physical processes in the avalanche.10

The velocity along the radar path is visualized in figure 12. The residuals are shown in figure 13. For the Rgf event the smallest

residual among all simulations is 2.4m s−1 and for the event in the VdlS the smallest residual is 6.2m s−1.

In figure 12a the dashed yellow line, representing the simulation with the smallest residual in velocity for both events combined

with the Voellmy model matches the velocity obtained by radar measurements quite well. However, the runout prediction of

the respective simulation is inaccurate. This example shows the importance of the evaluation of different observation variables.15

The dynamic pressure can be calculated from velocity with equation (53). The residual follows from equation (54) as for other
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Figure 13. Areas in the parameter space with relatively small residuals (less than 10% on the normalized scale) for the runout length (blue),

the affected area (red) and the velocity(yellow) for the different events and friction models. The triangle in the respective color marks the

simulation with the smallest residual δXmin. These residuals correspond to the evaluations of a single variable of a single event (type a). The

white triangle marks the smallest combined residual, which corresponds to an evaluation of combined residuals of a single event (type b).

observation variables. A direct calculation of the residual in pressure using the residual in velocity is not possible because

of the nonlinear correlation between them. Minimal residuals in velocity yield minimal residuals in pressure of 28kPa and

118kPa for Rgf and VdlS, respectively. Minimal residuals differ only slightly between the two investigated friction models,

when optimizing on single events. However, when using the same set of material parameters for both events, the residual gained

with the kinetic theory model is 88kPa compared to 116kPa from calculation with the Voellmy model (about 25%).5

A first impression of possible best fit parameters can be achieved by analyzing the overlapping areas in figure 13. This areas

represent parameter combinations which yield relatively small residuals. Figures 14a and 14b show the same kind of areas for

a combination of the two events. The bigger influence of the event in VdlS is clearly visible, as figures 14a and 14b are quite

similar to 13c and 13d. The white circles in figure 14 mark the positions of the smallest combined residual. In both cases it is10

located in the overlapping area of relatively small individual residuals.

The combined residual of velocity, runout length and affected area is shown in figures 14c and 14d for both friction models.

The minimal combined residual matches the white circle in the above figures. The form of the isobars matches qualitatively

the overlapping areas of the above small residuals. The combined normalized residual as calculated here, seems an appropriate

method for the determination of optimized parameter sets.15

7 Conclusions

From figure 13 one can see, that both rheological models can be fitted almost equally well to single observations from field

tests. The smallest residuals differ only slightly for the single cases. When different observation variables are combined, the
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Figure 14. 14a, 14b: Areas in the parameter space with relatively small residuals (less than 10% on the normalized scale) for the runout

length (blue), the affected area (red) and the velocity(yellow) for both events combined. The circle in the respective color marks the simulation

with the smallest residual δXmin (optimization to a single variable for both events, type c). The white circle shows the minimal combined

residual of runout, affected area and velocity (optimization type d). 14c, 14d: The combined residual in the parameter space. This surface

has a clearly visible local minimum within the physical relevant area. Their position matches with the white circles in the graphs above. The

minimal residual is in both cases located within the intersecting areas.
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Table 1. Obtained residuals for all possible result evaluations. Connected cells are results from the same parameter set. Triangles and circles

mark result evaluations which can also be seen in the parameter space in figures 13 and 14 respectively.

method

(a)

(a)

(b)

(b)

(c)

(d)

event

Rgf

VdlS

Rgf

VdlS

Rgf+VdlS

Rgf+VdlS

Voellmy Kinetic Theory Difference

δr δA δu δr δA δu δr δA δu

0.0 m 7750 m2 2.6 m s−1 0.0 m 7700 m2 2.4 m s−1 0 % 1 % 9 %

4.4 m 66275 m2 6.6 m s−1 0.0 m 65275 m2 6.2 m s−1 100 % 2 % 5 %

6.4 m 11675 m2 2.9 m s−1 12.9 m 10675 m2 2.4 m s−1 − 100 % 9 % 20 %

13.3 m 66275 m2 9.3 m s−1 4.4 m 65275 m2 8.5 m s−1 67 % 2 % 8 %

27.4 m 53038 m2 6.2 m s−1 22.9 m 49220 m2 5.0 m s−1 16 % 7 % 19 %

64.1 m 57779 m2 8.1 m s−1 24.0 m 49517 m2 7.0 m s−1 63 % 14 % 13 %

kinetic theory approach allows a better fit to the observed data. This is indicated by the larger overlapping area of the three

relatively small residuals in figure 14a compared to the areas in figure 14b. It stands to reason that the modification of the

friction with the flow height can help to represent different stages or flow regimes of the avalanche better. This leads to a more

realistic dynamic description in different parts of the avalanche, namely the avalanche track and the runout area.

This tendency increases with the number of observations combined. Table 1 shows an overview over possible evaluations and5

values obtained for both investigated models, where this trend is clearly visible. The difference between the Voellmy model

and the kinetic theory model increases with the number of combination in the optimization process. Figure 14 shows residuals

of the combination of events. The smallest combined residual for simulations with the Voellmy model is 0.057 (combination of

δr = 64m, δA= 58000m2, δu= 8m s−1 and δp= 159kPa). The kinetic theory approach reduces this value to 0.020 (com-

bination of δr = 24m, δA= 50000m2, δu= 7m s−1 and δp= 132kPa). This corresponds to a reduction of the residual in10

runout by about 60%, alongside with a reduction of the residual in the pressure along the avalanche track by about 20%.

This improvement can be obtained with very little modification to current models and simulation tools. An additional improve-

ment with a more accurate description of the velocity profile is expected. A more realistic velocity profile should also lead to

different friction in head and tail of the avalanche like proposed by Buser and Bartelt (2009).

Overall, velocities predicted by the presented models can match the observations quite well with an optimized set of parameters.15

However this may also be attributed to the considered entrainment process, since the analysis of similar friction approaches

showed less agreement of the velocities, disregarding entrainment (Fischer et al., 2014). This highlights the importance of

considering friction and entrainment equally in a process orientated approach and the respective impact on avalanche velocities

along the track.

The evaluation of the affected area seems problematic. Part of this problem can be attributed to uncertainties in the documen-20

tations. Therefore, it is hard to make assumptions about the quality of the model in this regard.

Another problem of observations in the runout zone is the rising temperature of the avalanche with its descent. The temperature

increases because of dissipating kinetic energy and entrainment of warm snow (Vera Valero et al., 2015). This is not considered

in the presented rheological model. The possibility of a negative coefficient χ at high pressures, as proposed by the extended

kinetic theory, should be further investigated. This effect may help explaining the low friction of catastrophic ice and snow25
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avalanches (Alean, 1985).

In summary this paper highlights how a rheological model from the kinetic theory applies to depth-averaged snow avalanche

simulations. To combine both frameworks we employed the commonly accepted assumption of a constant velocity profile

along the avalanche and during its decent. The resulting relation shows similarities to classic friction relations. The employed5

comparison method allowed to evaluate the different basal friction models with respect to different observation variables. Here

the residual sum of squares in combination with a normalization, such that values with different physical units and orders

of magnitude can be combined, allowed the comparison of the presented friction relation to the wide-spread Voellmy friction

relation. Utilizing the new relation shows some improvements, particularly when evaluating different observation variables and

multiple events.10
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